Self-learning Monte Carlo method

نویسندگان

  • Junwei Liu
  • Yang Qi
  • Zi Yang Meng
  • Liang Fu
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo Determination of Full Energy Peak Efficiency for HPGe Detector and Self-Absorption Correction of Environmental Samples

The Monte Carlo method was used to determine full energy efficiency of a high-purity germanium (HPGe) coaxial detector within an energy range of 53.2-2614 keV. Also, measurement was carried out for a standard Marinelli beaker of 600cm3, which was placed into the reference material of mixed gamma. The plot of the experimentally derived effic...

متن کامل

Self-learning kinetic Monte Carlo method: Application to Cu(111)

We present a method of performing kinetic Monte Carlo simulations that does not require an a priori list of diffusion processes and their associated energetics and reaction rates. Rather, at any time during the simulation, energetics for all possible singleor multiatom processes, within a specific interaction range, are either computed accurately using a saddle-point search procedure, or retrie...

متن کامل

Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo

Probabilistic modeling provides the capability to represent and manipulate uncertainty in data, models, decisions and predictions. We are concerned with the problem of learning probabilistic models of dynamical systems from measured data. Specifically, we consider learning of probabilistic nonlinear state space models. There is no closedform solution available for this problem, implying that we...

متن کامل

Reinforcement Learning using Kohonen Feature Map Probabilistic Associative Memory based on Weights Distribution

The reinforcement learning is a sub-area of machine learning concerned with how an agent ought to take actions in an environment so as to maximize some notion of long-term reward(Sutton & Barto, 1998). Reinforcement learning algorithms attempt to find a policy that maps states of the world to the actions the agent ought to take in those states. Temporal Difference (TD) learning is one of the re...

متن کامل

A reinforcement learning scheme for a multi-agent card game with Monte Carlo state estimation

This article presents the state estimation method based on Monte Carlo sampling in a partially observable situation. We formulate an automatic strategy acquisition problem for the multi-agent card game “Hearts” as a reinforcement learning (RL) problem. Since there are often a lot of unobservable cards in this game, RL is dealt with in the framework of a partially observable Markov decision proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017